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ABSTRACT

The vast majority of products and processes in industry and academia require
human interaction. Thus, digital human models (DHMs) are becoming critical for
improved designs, injury prevention, and a better understanding of human behavior.
Although many capabilities in the DHM field continue to mature, there are still many
opportunities for improvement, especially with respect to posture- and motion-prediction.
Thus, this thesis investigates the use of artificial neural network (ANN) for improving
predictive capabilities and for better understanding how and why human behave the way
they do.

With respect to motion prediction, one of the most challenging opportunities for
improvement concerns computation speed. Especially, when considering dynamic
motion prediction, the underlying optimization problems can be large and
computationally complex. Even though the current optimization-based tools for
predicting human posture are relatively fast and accurate and thus do not require as much
improvement, posture prediction in general is a more tractable problem than motion
prediction and can provide a test bead that can shed light on potential issues with motion
prediction. Thus, I investigate the use of ANN with posture prediction in order to
discover potential issues. In addition, directly using ANN with posture prediction
provides a preliminary step towards using ANN to predict the most appropriate
combination of performance measures (PMs) - what drives human behavior. The PMs,
which are the cost functions that are minimized in the posture prediction problem, are

typically selected manually depending on the task. This is perhaps the most significant



impediment when using posture prediction. How does the user know which PMs should
be used? Neural networks provide tools for solving this problem.

This thesis hypothesizes that the ANN can be trained to predict human motion
quickly and accurately, to predict human posture (while considering external forces), and
to determine the most appropriate combination of PM(s) for posture prediction. Such
capabilities will in turn provide a new tool for studying human behavior. Based on initial
experimentation, the general regression neural network (GRNN) was found to be the
most effective type of ANN for DHM applications. A semi-automated methodology was
developed to ease network construction, training and testing processes, and network
parameters. This in turn facilitates use with DHM applications.

With regards to motion prediction, use of ANN was successful. The results
showed that the calculation time was reduced from 1 to 40 minutes, to a fraction of a
second without reducing accuracy. With regards to posture prediction, ANN was again
found to be effective. However, potential issues with certain motion-prediction tasks
were discovered and shed light on necessary future development with ANNs. Finally, a
decision engine was developed using GRNN for automatically selecting four human
PMs, and was shown to be very effective. In order to train this new approach, a novel
optimization formulation was used to extract PM weights from pre-existing motion-
capture data. Eventually, this work will lead to automatically and realistically driving

predictive DHMs in a general virtual environment.

Vi
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CHAPTER I

INTRODUCTION

A digital human model (DHM) is a human representation on computer software
used to perform analyses and evaluations related to human performance. This
performance includes human posture prediction, motion prediction, ability to complete a
task, workplace design, and many other ergonomics studies that concern what is done by
human beings.

Artificial neural network (ANN) is a mathematical model for predicting system
performance (i.e., system output) inspired by the structure and function of
human biological neural networks. The ANN is developed and derived to have a function
similar to the human brain by memorizing and learning various tasks and behaving
accordingly. It is trained to predict specific behavior and to remember that behavior in the
future like the human brain does. Its architecture also is similar to human neuron layers in
the brain as far as functionality and inter-neuron connection. ANN has been successfully
used in various applications, including those in the DHM world.

ANN is a type of multi-dimensional regression analysis models. It is better in
some way than the other regression models, because ANN is more powerful in solving
practical and complex problems. Generally, researchers apply and use ANN in system
prediction problems when: 1) known and reliable system input/output sets are available
(i.e., training data availability), 2) fast system prediction is required, and 3) the system is
complicated and difficult to express in mathematical formulas. In general, the ANN is
able to predict any system accurately and rapidly no matter how complex the system.

This thesis works on using ANN to predict applications in the DHM field. First,
the proper type of ANN for the DHM applications was selected. Next, a new semi-
automated strategy was developed to ease the network construction, training and testing

processes, and network parameters. Then, the new strategy was used to predict some
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task-based human motion and posture predictions using ANN. Finally, a decision engine
was developed using ANN for selecting human performance measures (PMs), which are
functions that control human performance when intending to perform a task.

This chapter presents an introduction to the thesis work and provides background
about the general use of ANN and DHM applications. In addition, it describes a
hypothesis and the motivation for targeting the use of ANN in predicting DHM. The
chapter starts by introducing background on the general research concepts for this thesis.
Then, the research motivation and literature review are presented to show the scope of the
current state of the art in the DHM field and the various applications of ANNs. Finally,
the research objectives and contributions are presented, followed by a brief overview of

the thesis.

1.1. Background

In virtual human science, it is important to study and predict human performance,
which includes motion, posture, grasping, etc., in order to duplicate realistic human
performance. Human motion prediction is to predict a human’s motion during specific
tasks like walking, running, jJumping, etc. This prediction is achieved by an optimization-
based method in which the body’s degrees of freedom (DOFs) are the design variables to
achieve the required motion, and the PMs are the functions to be minimized. Similarly,
human posture prediction is a prediction of a human’s posture while performing a defined
task like reaching a point, lifting a box, etc. Human performance prediction, however, is
not easy because it is influenced by PMs, which are the cost functions that a human tries
to minimize to perform such a task. Depending on the task, one or more of those PMs are
minimized. For example, minimizing the joint displacement PM alone was useful for
touching points in front of the body, but it provided bad postures for points behind the
body; it should combine with other PMs like potential energy. Maximum joint torque PM

was used to provide realistic postures in box-lifting studies (Marler et al., 2011).



Generally speaking, PMs are the functions to be minimized in single-objective
optimization (one PM) or multi-objective optimization (two or more PMs) by finding the
body DOFs, which are the design variables of the optimization problem. The way these
PMs are combined in different human performances is still unclear because there are
many kinds of PMs, and there are various tasks to be studied. In addition, which PM to
include for a task and the weight or importance of that included PM in the optimization
problem has not yet been studied. Researchers also found that PMs are highly correlated,;
changing their values or types affects performance results.

In order to develop successful DHM, researchers have worked on various kinds of
human actions (motion, posture, etc.). Predicting human motion and posture is important
for understanding what drives human performance, and is useful in other practical studies
like human simulations. The most advanced and successful works were in human posture
prediction, where researchers developed different approaches to apply and predict human
postures on computer human models. This work on posture prediction is mature in terms
of predicting human postures in real time accurately and for all body joints. On the other
hand, researchers are trying to make posture prediction more robust and adaptable to the
task to be accomplished.

Unlike posture prediction, human motion prediction is very complex because it
requires dynamic prediction for body DOFs. Solid work was done toward developing a
high-fidelity human motion prediction that could perform in a task-based manner like the
predictive dynamic algorithm that was introduced by Xiang et al. (2010). On the other
hand, those available algorithms need a long time, averaging in minutes, to run and
provide the motion for such a task; processing time is needed to calculate and optimize
different DOF values over the motion time for such a task. The motion prediction
calculations are a problem even for simple tasks or rerunning the same task with some
minor input changes. Hence, there is a need for real-time motion prediction in order to

allow the user to see immediate results for changes in any task input parameters.



Moreover, more reliable sources for human motion prediction, like motion capture data,
should be used in order to obtain robust results and practical indications about how and
why humans perform.

In this thesis, a new ANN-based approach is presented to study some DHM
applications, which could eventually lead to understanding how humans think or behave
when performing tasks. These applications include: 1) motion prediction, 2) posture
prediction, and 3) performance measures (PMs) determination. The new approach
investigates improving the speed of computations in the motion prediction task and
making posture prediction more robust. In addition, the thesis tries to address
determination of PMs using ANN. As mentioned, humans try to minimize some PMs
during tasks. The PMs could be joint-based, like maximum joint torques, displacement,
and discomfort, or energy-based. Studies were done using one or some of those PMs in
posture prediction to get ideas about their effects on human performance. The studies,
however, minimally specify when and why to use such PMs, and for which kind of tasks
(Marler et al. (2005a). Therefore, predicting the use of different PMs at various tasks is
critical to get a better understanding of human performance and a better representation of
what drives human performance.

The work in this thesis focuses on using ANN to initiate a pathway for solving
problems related to human performance prediction. The ANN can predict complex
systems quickly for best system results and shows excellent trade-off between the input
parameters or factors that control the system. This ability is achieved because the network
depends on some training or learning data (i.e., known sets of system input and output),
like the human brain does. So, the network predicts any new input by doing minor
calculations because it was trained to see similar inputs. The learning process needs
experience to perform on the network for best prediction, because some network
parameters need to be set depending on the predicted system’s inputs and outputs. More

detailed information about ANN, its architecture, and its learning process will be



described in Chapter 2. The learning process and network parameters would be
automated so that any user could use it, including those who are not expert in ANN.
Currently, the common limitation for using different types of ANNS is that some of the
parameters are determined by trial and error, which could produce bad predictions.
Moreover, there are different types of ANN, such as the feed-forward neural network
(FFNN) and the radial basis neural network (RBNN), that are used to solve problems
similar to those in DHM,; these types have other subtypes under their names. Therefore,
the best type of ANN for DHM applications has not been determined; it depends on
researcher preference. Different types of FFNN and RBNN were used in many

applications with varying success rates.

1.2. Literature Review

The current DHM needs and state of the art in ANN applications need to be
reviewed. This section discusses the literature regarding the broad use of ANNSs in
various applications, especially in DHM fields, with regard to their ability and the kind of
problems they can handle. Three DHM applications that target understanding human
intelligent behavior are also discussed. Those applications include human motion

prediction, posture prediction, and joint-based PMs.

1.2.1 Artificial neural network (ANN) applications

ANN is fast and accurate because after the training process is completed,
optimization and time-consuming calculations are no longer needed. So, the network
outputs are predicted directly for the provided inputs based on what it has learned to
predict for a specific system. There are many ANN types that are used for various
applications such as engineering, weather and flood forecasting, business, and medicine
because of their power and ability to generalize any practical problem (Coit et al., 1998;

Twomey et al., 1998).



Generally, ANN applications fall into the categories of data clustering,
classification, or regression. Data clustering creates relationships between fed inputs and
separates them into different clusters based on their similarities. In classification, inputs
are assigned to their class among different classes. Data regression means creating a
curve that passes and fits between training data sets. The data regression type is normally
used to predict and solve DHM applications. The main regression types of ANN are
FFENN and RBNN, both of which have other subtypes under different names. The ANN
detailed architecture and common types will be described in Chapter 2. Variables that
could be used as input parameters in DHM applications include, but are not limited to,
human anthropometry, the task to be performed, load existence, position (sitting or
standing), joint ranges of motion (ROMSs), and model DOFs.

Researchers incorporate ANN when they want to save time or cost in system
development, or when they are unable to represent the system with a mathematical
algorithm. For example, ANN was used to find the Cobb angle, which indicates scoliosis
severity, by selecting the optimal set of input torso indices (Jaremko et al., 2002). The
Cobb angle (ANN output) was calculated with accepted accuracy. Tani et al. (2008)
trained a recurrent neural network (a type of ANN) on a humanoid robot to learn to
manipulate objects. The results showed that the network can afford both generalization
and context dependency in generating skilled behaviors. In addition, ANN was used in
linguistics by Collobert et al. (2008) for language processing predictions. For a given
sentence (ANN input), they trained the network to predict part-of-speech tags, chunks,
named entity tags, semantic roles, semantically similar words, and the likelihood that the
sentence makes sense.

Recently, researchers became more interested in using ANN in DHM because of
its efficiency and accuracy in solving problems like human performance prediction. Such
studies applied ANN in humanoid motion prediction, obstacle avoidance, human posture

prediction, and other human-workplace problems. Zha et al. (2003) proposed an ANN-



based approach for human-machine system design and simulation that predicts an
operator’s postures and joint angles of motion (ANN outputs) associated with a range of
workstation configurations (ANN inputs). Another study was done by Li et al. (2007) on
humanoid dynamic obstacle avoidance. The idea was to use cameras to collect the motion
path of dynamic obstacles (ANN input) and then build a prediction model using a radial
basis neural network (RBNN) using those data. Dynamic obstacles can be utilized in
local path planning for a mobile robot in dynamic and uncertainty environments. Once
the planner finds there is a dynamic obstacle in the rolling window, the network predicts
the obstacle’s motion path (ANN output) in the next period based on three time sequence
values of the obstacle in a continuous period of time. Work-related posture prediction and
human-machine work efficiency using RBNN were presented by Zhao et al. (2010); the
RBNN was used in mapping posture prediction and also in referring to the working
efficiency with around 27 DOF. That study concluded that RBNN was fast in terms of
calculating the virtual human postures and promising in solving ergonomics simulation
and assessment of human-machine system problems. Those works are examples that
show how efficient ANN is in handling practical problems, especially in DHM studies.
Grasping tasks were also tested using ANN by, for example, training the network on
specific grasps corresponding to finger positions. Inverse kinematics mapping between
the fingertip 3D position and the corresponding joint angles were proposed and evaluated
using ANN (Rezzoug et al., 2008), where the network had 3 inputs and 21 outputs. The
study used an instrumented glove for mapping finger movements to a multi-chain model
of the hand. From the fingertip desired position, the network allowed predicting the
corresponding finger joint angles that achieve finger positions.

Applying ANN in broad fields shows its ability in solving different kinds of
problems. Scholars have used ANNs in DHM problems and obtained acceptable results,
but no one type of ANN has been determined to be best for DHM problems. One study

claimed that RBNN was fast in terms of calculating the virtual human postures and might



be good for similar applications, but in reality, all ANNs work quickly once the training
is completed. The network types, however, differ in speed of training and time for
optimizing or learning their prediction capabilities during the training phase. For
example, FFNN experiences memory problems if the number of inputs and/or outputs is
relatively large, and this limits using it for some applications, especially in DHM. In
human motion prediction, the number of predicted outputs is large because that includes
predicting all body DOFs and their values at all time frames over the motion task. That
means hundreds of outputs, which might explain the limited use of FFNN and ANNS in
general for studying human performance applications. Moreover, the learning process,
which is the core of using ANN, should be performed in a more generic and smarter way
so that any system is predicted in the proper way.

Within the context of human modeling problems, ANNs are applied only to very
specific scenarios and have not yet been developed for robust use with more general
DHM problems. To date, ANNs have been used in DHM for solving confined systems
with a small number of parameters or conditions. The following discussion will present
the current state in three DHM applications with the focus on using ANN as an approach
in these applications. These applications include motion prediction, posture prediction,

and PMs.

1.2.2 Human motion prediction and artificial neural
network (ANN)

As part of studying human biomechanics and DHM, it is important to understand
human motion as a dynamic function and a way to touch the factors or drivers that direct
human thinking in task performance. Real understanding and duplication of human
motion strategies also inspires many industrial fields that use intelligent moving parts as
well as humanoid dynamics. Most motion prediction studies depend on motion capture

systems as an approach to track, record, and reproduce human motions. Chaffin et al.



(2001) used a motion capture system to record human motion while reaching and moving
light to moderate load objects while either seated or standing. Then, they used a 17-link
kinematics model to resolve the dynamics of the motions where their initial motion
prediction algorithms captured well over 95%. Other various optimization and
mathematical approaches are also used to reconstruct human motion that is real and
computationally fast. Xiang et al. (2010) developed the predictive dynamic (PD), which
is a simulation for human motion based on formulating an optimization problem with
appropriate PMs and constraints that depend on the predicted task. Despite the PD
novelty in reproducing realistic motions, computational speed is still the main limitation
to making the PD work in real time.

Another efficient mathematical approach for predicting human motion is ANN,
which can handle complex problems like human motion. Researchers applied ANN in
gait and motion analysis; the FFNN type was used to manipulate an electro-myogram
(EMG) signal and joint motion in predicting a joint’s stiffness control strategy during a
specific contact task (Kang et al., 2007). For that study, they tested three different ANNSs.
The network inputs were 16, 18, and 20, respectively, for all proposed networks with four
outputs. The results showed that the third network gave the most accurate results without
any problems in terms of time or training processes for using that number of inputs. The
third network provided the best results because it had more parameters that described the
problem more specifically, which improved the prediction ability. Najmaei et al. (2010)
showed that by using FFNN, the future motion trajectory of the human can be integrated
in a reactive control safety strategy to foresee and react to an upcoming dangerous
situation prior to its occurrence. As a result, it was shown that applying a prediction-
based reactive control strategy using ANN could compensate for the delay due to danger
evaluations and the modification of the path and could significantly improve the

performance.
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Moreover, the efficiency of using ANN for motion prediction is shown clearly in
robotics applications. Hahn et al. (2005) performed a study to demonstrate the
effectiveness of ANN in mapping gait measurements into motion. The FFNN type was
used in that study and improved the performance by minimizing the processing time and
increasing the accuracy of the mapped motion. Nishide et al. (2009) developed a model
that searches and generates robot motions using two types of ANN. They trained the
recurrent type of neural network with parametric bias to self-organize robot and object
dynamics. Then, another type of ANN, the hierarchical neural network, was trained to
link the object image with the searched motion. The results showed that the robot
acquired the most reliable motion and shifted it according to the posture of the object. Bu
et al. (2009) also proposed a task model motion prediction using a Bayesian network
type. That model was able to predict occurrence probabilities of the motions concerned in
the task by using information from the previous motion.

Some work showed that incorporating ANN in motion prediction improved the
accuracy and computational speed, which was responsible for the delay in some outputs
when using other methods. One of the studies compared three ANNS’ prediction abilities
for human motion performance and found that the one with the most input parameters
had the best output ability. This indicates that expressing a system using more inputs will
improve the general performance in terms of handling more conditions as well as
predicted outputs. Most of the work discussed here, however, used FFNN, which has
some memory and accuracy issues with a large number of inputs and outputs. This
suggests that other types of ANN should be tested and used for motion prediction. In
addition, no work has been done on prediction of motion for a full human model, likely
because of limitations in the types of ANN used. Moreover, no one has coupled ANN

with PD to improve the speed of calculations.
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1.2.3 Human posture prediction and artificial neural
network (ANN)

Besides human motion prediction, posture prediction is an important part of
designing a virtual human. A lot of effort is required to find the best way to predict and
express any human model’s posture. We need to predict posture for many ergonomic
studies as well as human-machine workplace design. Predicting real posture is
complicated because humans behave differently and choose their postures based on many
factors that are still unclear. There are two main approaches to solving posture prediction
problems. The first approach involves prerecorded data using motion capture systems
combined with anthropometric data and functional regression models (Beck et al., 1992;
Chaffin et al., 2001). Those recorded data are used to build an algorithm that simulates
different human motions (Park et al., 2002). Methods such as the pseudo-inverse method
are then used to solve the optimization problem and find the best expected posture from
the robot or virtual human model (Liegeois et al., 1977). The prerecorded data method,
however, is not able to provide a wide range of creative or hypothetical postures.

The second approach involves real-time inverse kinematic optimization-based
posture prediction that has recently been introduced as a dependable way to predict
human posture based on some objective functions. It depends on defining the final
position (target point) that needs to be reached. Basically, the optimization problem has
three main parts: (1) variables to be found, (2) objective functions, which are functions of
those variables, and (3) constraints, which are the limits that the design can’t exceed. For
human posture prediction, joint angles are the design variables. Many factors are
incorporated in human posture prediction as objective functions, called PMs, that play an
important role in brain decisions. Some of those factors are related to comfort level, like
moving near joint limits, while others are related to the tendency to minimize joint
torques, potential energy, joint displacements, and visual displacement. The constraints

include the distance between the last link end and the target point, as well as the upper
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and lower joint ROM limits. Riffard et al. (1996) found the optimum torso and arm
displacements with seven DOF using an unconstrained optimization approach. Abdel-
Malek et al. (2001) developed an efficient numerical formulation for the prediction of
real postures, which was based on kinematics for modeling with optimization of a cost
function to predict a realistic posture.

Whether human posture prediction is obtained from inverse kinematics or
prerecorded data, some generalization methods like ANN have been used to handle some
posture prediction problems and recreate postures in a fast and accurate manner.
Researchers found that ANN is applicable to predicting posture without significant
difference from the traditionally used methods (Jung et al., 1994). In that study, FFNN
was trained to predict a 9-DOF human arm (DOF values were the outputs), and it
provided acceptable results. There was no significant difference between the coordinates
of the joints generated by the network and those measured from human posture reaching
for the given targets (ANN inputs). Perez et al. (2008) used FFNN to predict two lifting
postures based on finding joint angles that represent these postures. The network had 7
inputs and 10 outputs; it predicted whole-body posture with an error of 5-20 degrees per
joint angle for most body angles. Zhang et al. (2010) used FFNN to predict posture where
the network inputs were landmarks that characterize human posture while the predicted
outputs represented the transformed posture, which is a set of other landmarks. The range
of errors in ANN prediction was acceptable in posture prediction, because it is hard to
define the best posture for accomplishing a specific task since people just behave
differently.

The use of ANN in human posture prediction was developed early and applied in
various studies. All studies referred to the potential use of ANNSs to predict real and fast
human postures. Application of ANNSs in posture prediction is also powered by the
available and reliable sources for training the network on intended postures. Those

current posture prediction sources could predict postures in real time. On the other hand,
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the use of ANN in human posture prediction in the context of a full human model (i.e., a
human model with a realistic number of DOFs) is still unavailable. Like human motion

prediction, studying human posture prediction using ANNSs needs to be done by different
types of ANNSs, which might improve the prediction ability and handle the large number

of DOFs for such a human model.

1.2.4 Joint-based performance measures (PMs)

As stated earlier in the background, motion and posture prediction problems are
affected by many factors and cost functions called PMs. These PMs could be joint-based,
like maximum joint torques, displacement, and discomfort, or whole-body energy-based,
like potential energy. Completing a task based on optimizing those PMs is a multi-
objective optimization (MOQ) problem, where the PMs are optimized together in one
function. In general, PMs control human decisions about motion, posture, sitting,
standing, and any other task to be accomplished. In this thesis, four joint-based PMs are
studied, including: 1) discomfort, 2) joint displacement, 3) maximum joint torque, and 4)
total joint torques. We focus in this thesis on the use of these four PMs in the context of a
human posture prediction problem. The PMs are differently combined in the optimization
problem depending on the task and the conditions of that task. The MOO problem is

formulated as follows (Marler et al., 2004):

Find: q € RPOF (1.1)
To minimize: (@ =1[f1(q1) f2(q2)... fk(gk)]”
Subject to: qgr< q; <q’;i=1,